skip to main content


Search for: All records

Creators/Authors contains: "Marin, III., Roman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV’s vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference. 
    more » « less
  2. Abstract

    Metagenomic and metatranscriptomic time-series data covering a 52-day period in the fall of 2016 provide an inventory of bacterial and archaeal community genes, transcripts, and taxonomy during an intense dinoflagellate bloom in Monterey Bay, CA, USA. The dataset comprises 84 metagenomes (0.8 terabases), 82 metatranscriptomes (1.1 terabases), and 88 16S rRNA amplicon libraries from samples collected on 41 dates. The dataset also includes 88 18S rRNA amplicon libraries, characterizing the taxonomy of the eukaryotic community during the bloom. Accompanying the sequence data are chemical and biological measurements associated with each sample. These datasets will facilitate studies of the structure and function of marine bacterial communities during episodic phytoplankton blooms.

     
    more » « less
  3. Abstract

    The organic sulfur compound dimethylsulfoniopropionate (DMSP) is synthesized by numerous species of marine phytoplankton, and its volatile degradation products are a major source of biogenic sulfur to the atmosphere. A massive bloom of the dinoflagellateAkashiwo sanguineaoccurred in Monterey Bay, CA, USA, in the fall of 2016 and led to exceptionally high seawater DMSP concentrations that peaked at 4,240 nM. Bacterial consumption rates showed that only a small fraction of the DMSP standing stock flowed through the dissolved DMSP pool per day, contributing to the high DMSP concentrations and creating conditions conducive to production of dimethylsulfide (DMS). Conservative calculations of DMS yield from this persistentA. sanguineabloom suggest substantial regional‐scale inputs of DMS‐sulfur to the atmosphere. Other recently reported major coastal blooms ofA. sanguinea, along with indications that this species may benefit from climate change conditions, reveal a mechanism that could alter oceanic contributions to atmospheric sulfur pools.

     
    more » « less